Find the coefficient of \( x^{100} \) in;-1 \[ (1+x)+2(1+x)^{2}+3(1+x)^{3}+\ldots 1000(1+x)^{1000} \]


Share with your friends
Call

(1+x) + 2(1+x)2 + 3(1+x)3 + .....+ 1000 (1+x)1000

Now,

1 + (1+x) + (1+x)2 + (1+x)3 + .....+ 1+x)1000 = \(\frac{1-(1+x)^{1001}}{1-(1+x)}\) 

(∵1+x+x2+......+xn\(\frac{1-(1+x)^{n+1}}{1-x}\))

By differentiating both sides w.r.t.x, we get

⇒ 1+2(1+x)+3(1+x)2 + .....+1000(1+x)999\(\frac{-[x\times -1001(1+x)^{1000}-(1-(1+x)^{1001}\times 1)]}{x^2}\)

⇒ 1+2(1+x)+3(1+x)2 + .....+1000(1+x)999\(\frac{1001x(1+x)^{1000}+1-(1+x)^{1001}}{x^2}\)

Multiplying both sides by (1+x), we get

(1+x) + 2(1+x)2 + 3(1+x)3 +....+1000(1+x)1000 = \(\frac{1001x(1+x)^{1001}-(1+x)^{1002}}{x^2}\)

\(\frac{1001(1+x)^{1001}}{x}\) - \(\frac{(1+x)^{1002}}{x^2}\) + \(\frac{1+x}{x^2}\)

∴ coefficient of x100 in ((1+x)+2(1+x)2+.....+1000(1+x)1000)

= 1001 x coefficient of x101 in (1+x)1001 - coefficient of x102 in (1+x)1002.

= 1001 x \(^{1001}C_{101}\) - \(^{1002}C_{102}\)

= 1001 x \(\frac{(1001)!}{(101)!(900)!}\) - \(\frac{(1002)!}{(102)!(900)!}\)

= 1001 x \(\frac{(1001)!}{(101)!(900)!}\) - \(\frac{1002\times (1001)!}{102\times(101)!(900)!}\)

\(\frac{(1001)!}{(101)!(900)!}\) (1001 - \(\frac{1002}{102}\))

\(^{1001}C_{101}\)(1001 - \(\frac{167}{17}\))

\(^{1001}C_{101}\) x \(\frac{16850}{17}\) 

Hence,

The coefficients of x100 in [(1+x) + 2(1+x)2+3(1+x)3 + ....+1000(1+x)1000] is \(\frac{16850}{17}\) x \(^{1001}C_{101}\).