Share with your friends
hdshahin01

Call

In mathematics, calculus on finite weighted graphs is a discrete calculus for functions whose domain is the vertex set of a graph with a finite number of vertices and weights associated to the edges. This involves formulating discrete operators on graphs which are analogous to differential operators in calculus, such as graph Laplacians as discrete versions of the Laplacian, and using these operators to formulate differential equations, difference equations, or variational models on graphs which can be interpreted as discrete versions of partial differential equations or continuum variational models. Such equations and models are important tools to mathematically model, analyze, and process discrete information in many different research fields, e.g., image processing, machine learning, and network analysis.

In applications, finite weighted graphs represent a finite number of entities by the graph's vertices, any pairwise relationships between these entities by graph edges, and the significance of a relationship by an edge weight function. Differential equations or difference equations on such graphs can be employed to leverage the graph's structure for tasks such as image segmentation , data clustering, data classification, or community detection in a social network.

The main advantage of finite weighted graphs is that by not being restricted to highly regular structures such as discrete regular grids, lattice graphs, or meshes, they can be applied to represent abstract data with irregular interrelationships.

If a finite weighted graph is geometrically embedded in a Euclidean space, i.e., the graph vertices represent points of this space, then it can be interpreted as a discrete approximation of a related nonlocal operator in the continuum setting.

Talk Doctor Online in Bissoy App